Инструменты пользователя

Инструменты сайта


Боковая панель

Регистрация

Учебные курсы

Учебные проекты

Материалы к экзаменам

Полезная информация

Обратная связь

others:podpr1

Эрлангенская программа

К середине XIX века геометрия разделилась на множество плохо согласованных разделов: евклидова, сферическая, гиперболическая, проективная, аффинная, конформная, риманова, многомерная, комплексная и т. д. На рубеже веков, уже после доклада Клейна, к ним добавились ещё псевдоевклидова геометрия и топология.

Клейну принадлежит идея алгебраической классификации различных отраслей геометрии в соответствии с теми классами преобразований, которые для этой геометрии несущественны. Более точно выражаясь, один раздел геометрии отличается от другого тем, что им соответствуют разные группы преобразований пространства, а объектами изучения выступают инварианты таких преобразований.

Например, классическая евклидова геометрия изучает свойства фигур и тел, сохраняющиеся при движениях без деформации; ей соответствует группа, содержащая вращения, переносы и их сочетания. Проективная геометрия может изучать конические сечения, но не имеет дела с кругами или углами, потому что круги и углы не сохраняются при проективных преобразованиях. Топология исследует инварианты произвольных непрерывных преобразований (Клейн отметил это ещё до того, как родилась топология). Изучая алгебраические свойства групп преобразований, мы можем открыть новые глубокие свойства соответствующей геометрии, а также проще доказать старые. Подход Клейна унифицировал различные геометрии и их методы, прояснил их различия. Вне данной схемы осталась только риманова геометрия; для её включения в общую систему понадобилось в 1920-х годах значительно обобщить подход Клейна.

Пример простого доказательства того, что медианы любого треугольника пересекаются в одной точке. Медиана есть аффинный инвариант; если в равностороннем треугольнике медианы пересекаются в одной точке, то и в любом другом это будет верно, потому что любой треугольник можно аффинным преобразованием преобразовать в равносторонний и обратно.

Следует отметить, что после первой алгебраизации геометрии Декартом, то есть в аналитической геометрии, имелось одно неудобство: часто приходилось отдельно доказывать геометрический характер результатов, то есть их независимость от системы координат. Дополнительным достоинством подхода Клейна было то, что полученные инварианты по самому смыслу своего определения от системы координат не зависят.

Сущность Эрлангенская программа состоит в следующем. Как известно, евклидова геометрия рассматривает те свойства фигур, которые не меняются при движениях; равные фигуры определяются как фигуры, которые можно перевести одну в другую движением. Но вместо движений можно выбрать какую-нибудь иную совокупность геометрических преобразований и объявить «равными» фигуры, получающиеся одна из другой с помощью преобразований этой совокупности; при этом придём к иной «геометрии», изучающей свойства фигур, не меняющиеся при рассматриваемых преобразованиях. Введённое «равенство» должно удовлетворять следующим трём естественным условиям:

1) каждая фигура F «равна» сама себе,

2) если фигура F «равна» фигуре F″ то и F″ «равна» F,

3) если фигура F «равна» F″ а F″ «равна» F″″, то и F «равна» F″″.

Соответственно этому приходится накладывать на совокупность преобразований следующие три требования:

1) в совокупность должно входить тождественное преобразование, оставляющее всякую фигуру на месте,

2) наряду с каждым преобразованием П, переводящим фигуру F в F« в совокупность должно входить «обратное» преобразование П-1 переводящее F″ в F,

3) вместе с двумя преобразованиями П1 и П2, переводящими соответственно F в F″ и F″ в F″″, в совокупность должно входить произведение П2П1 этих преобразований, переводящее F в F″″ (П2П1) состоит в том, что сначала производится П1, а затем П2).

Требования 1, 2 и 3 означают, что рассматриваемая совокупность является группой преобразований. Теория, которая изучает свойства фигур, сохраняющиеся при всех преобразованиях данной группы, называется геометрией этой группы.

others/podpr1.txt · Последние изменения: 2014/11/27 09:06 — 127.0.0.1